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Abstract—In this paper we consider the MAX-WEIGHT pro-
tocol for routing and scheduling in wireless networks under
an adversarial model. This protocol has received a significant
amount of attention dating back to the papers of Tassiulas
and Ephremides. In particular, this protocol is known to be
throughput-optimal whenever the traffic patterns and propagation
conditions are governed by a stationary stochastic process.

However, the standard proof of throughput optimality (which
is based on the negative drift of a quadratic potential function)
does not hold when the traffic patterns and the edge capacity
changes over time are governed by an arbitrary adversarial pro-
cess. Such an environment appears frequently in many practical
wireless scenarios when the assumption that channel conditions
are governed by a stationary stochastic process does not readily
apply.

In this paper we prove that even in the above adversarial
setting, the MAX-WEIGHT protocol keeps the queues in the
network stable (i.e. keeps the queue sizes bounded) whenever this
is feasible by some routing and scheduling algorithm. However,
the proof is somewhat more complex than the negative potential
drift argument that applied in the stationary case. Our proof
holds for any arbitrary interference relationships among edges.
We also prove the stability of ε-approximate MAX-WEIGHT under
the adversarial model. We conclude the paper with a discussion of
queue sizes in the adversarial model as well as a set of simulation
results.

I. INTRODUCTION

We consider the performance of the Max-Weight routing
and scheduling algorithm in adversarial networks. Max-Weight
has been one of the most studied algorithms [1], [2], [3] since
it was introduced in the work of Tassiulas and Ephremides
[4], [5] and Awerbuch and Leighton [6], [7]. The key property
of Max-Weight is that for a fixed set of flows it is throughput
optimal in stochastic networks with a wide variety of scenarios
[4], [8], [9], even though it may fail to provide maximum
stability in a scenario with flow-level dynamics [10]. That
is, for a fixed set of flows the Max-Weight protocol keeps
the queues in the network stable whenever this is feasible
by some routing and scheduling algorithm. Moreover, we can
obtain a bound on the amount of packets in the system that is
polynomial in the network size.

However, the standard analyses of the Max-Weight algo-
rithm make critical use of the fact that the channel conditions
and the traffic patterns are governed by stationary stochastic
processes. The stationary stochastic model deals with the case
where traffic patterns do not deviate much from their time-
average behavior. On the other hand, we shall consider the

worst case traffic scenario modeled by adversarial models. If
an adversary chooses traffic patterns and interference condi-
tions, and edge capacities change over time in an arbitrary
way, then the question remains as to whether a system running
under Max-Weight can be unstable. It is important to model the
worst (adversarial) case because non-evenly distributed traffic
patterns are observed over time in many queuing models.
A typical adversarial scenario is a military communication
network, in which there could exist adversarial jammers. Once
it is jammed, the victim link will have zero capacity or very
weak capacity. Ensuring stability under the worst case is
crucial in many such systems. The aim of the current paper is
to resolve this question.

Previous work has shed some light on this issue. In [11]
it was shown that for a single transmitter sending data over
one-hop edges to a set of mobile users, if the set of non-zero
channel rates can approach zero arbitrarily closely, then no
protocol can be stable. However, since this is a fairly unnatural
condition, [11] looked at the more natural setting in which all
rate sets are finite. For this case a stable protocol was given
but it was a somewhat unnatural protocol that relies on a lot
of bookkeeping. The stability of a more natural protocol such
as Max-Weight was left unresolved.

In some adversarial setting, the stability of Max-Weight
in static networks was proven in [12], and the stability of
Max-Weight was proven in dynamic networks with single-
commodity demands [1] and multicommodity demands [13].
However, these proofs only applied to the case when each edge
could be scheduled independently (in other words, the decision
to transmit on an edge has no affect on the edge rates on other
edges), This is obviously not a suitable model for wireless
transmissions in which edges can clearly affect each other. As
discussed in [11], the stability of Max-Weight was not known
in the adversarial setting for the case of interfering edges, even
if we only have one node that transmits.

In this paper we resolve the question of the stability of
Max-Weight in general adversarial networks. We present an
adversarial model of interfering edges and show that the Max-
Weight policy always maintains stability as long as we are
strictly within the network stability region, even when the
stability region is allowed to change over time. We consider a
very general adversarial model that can be applied to all the
possible interference conditions, including k-hop interference
[14], independent set constraint [15], [16], and node exclusive
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constraints [17], [18], [19], [20]. Our proof gives a bound on
the queue size that is exponential in the network size. (This is
unlike the stochastic case.) However, we also demonstrate (us-
ing an example inspired by [21]) that such exponential queue
sizes can occur. Although computing the optimal solution of
Max-Weight is computationally NP hard for many scenarios,
in many practical wireless networks ε-approximate solutions
can be computed in polynomial time [22], [15], [16]. In this
paper, we also prove the stability of any ε-approximate Max-
Weight under the adversarial model, when ε > 0 is small
enough. We conclude the paper with a set of simulation results
showing stability of Max-Weight on adversarial setups.

A. Discussion

We now give a high-level description of the Max-Weight
algorithm and discuss why the standard stochastic analyses
are invalid in the adversarial case. Essentially the protocol
operates by maintaining at each node v a queue of data for
each possible destination d. We denote the size of this queue
at time t by qtv,d. For any set of edges in the network, the total
weight on the set at time t is the sum over all edges in the set
of the queue differentials multiplied by the instantaneous edge
rates. (A formal definition will be given in the model section
below.) At all times the MAX-WEIGHT protocol transmits data
on edges so as to maximize the total weight that it gains.
In many situations computing the exact Max-Weight set of
transmissions is a computationally hard problem. However,
in Section IV we show the stability of an approximate Max-
Weight algorithm which can be implemented efficiently in
many practical setups.

We say that we are in the stationary stochastic model if
there is an underlying stationary Markov Chain whose state
determines the channel conditions on the edges. We say that
we are in the adversarial model if we do not make such
assumptions. In order to make sure that the network is not
inherently overloaded the adversarial model assumes that there
exists some way to route and schedule the packets so as to keep
the network stable. However, these routes and schedules are a
priori unknown to the algorithm

Most previous analyses of Max-Weight have been per-
formed in a stationary stochastic model and they take the
following form. Define a quadratic potential function P (t) =∑
v,d(q

t
v,d)

2 and show, using the assumption that the traffic
arrivals are within the network stability region, that the po-
tential function always has a negative drift up to an additive
second order term of P (t+1)−P (t) =

∑
v,d(q

t
v,d+σtv,d)

2−∑
v,d(q

t
v,d)

2 where σtv,d = qt+1
v,d − qtv,d. Moreover, when the

potential function become sufficiently large, the negative drift
in the first order term is sufficient to overcome the positive
second order term. Therefore the entire potential function
has a negative drift. This determines an upper bound on
P (t) =

∑
v,d(q

t
v,d)

2 and hence we have an upper bound on∑
v,d q

t
v,d.

The reason that this type of analysis does not apply in the
adversarial model is that the channel rates associated with
the large queues in the network may be very small (or even

zero). In this case we cannot necessarily say that a large queue
implies a large drop in the potential. Hence for any possible
queue configuration there is always the possibility that the
potential function P (t) =

∑
v,d(q

t
v,d)

2 can increase. Hence
we need a different approach to ensure stability. We discuss
this in more detail in Section II.

B. Why do adversarial models make sense

We now briefly discuss why it is useful to consider the
adversarial setting which includes the worst case scenario; A
model that is governed by a stationary stochastic process is
not general enough to cover many widely occurring scenarios.
For example, consider a cellular network in which a car is
driving down a road between evenly spaced basestations. In
this case the channel conditions between the car and its closest
basestation will rise and fall in a periodic fashion. Moreover,
when a car drives into an area of poor coverage (e.g. a tunnel),
the channel rate could go to zero. In particular, this could
happen in a haphazard manner that is not modeled by a
stationary stochastic process.

The situation is even more severe in ad-hoc networks. As
nodes move around many of the edges (i, j) will only be active
for a finite amount of time. Hence any stationary stochastic
model that gives a non-zero channel rate to such an edge
cannot accurately reflect the edge rate over a long time period.
However, we still wish to ensure that the queue sizes will
not blow up unnecessarily over time and we believe that an
adversarial analysis is one way to address this type of question.

In [13], the stability of Max-Weight in some adversarial
model was proven. However, it was not sufficiently rich to
capture many types of wireless interactions. First of all, in the
model of [13] all edge rates were either zero or one. Secondly,
when a edge had rate one we could transmit on it regardless
of what is happening on the other edges. However, this model
cannot capture a situation in which edge rates are variable,
nor can it capture a scenario with two interfering edges such
that we can transmit on either one in isolation but not both
simultaneously.

In this paper we will define a more general adversarial
model in which any interference conditions are possible and
edge rates can vary over time. This allows us to capture
arbitrary types of wireless interference behavior. In the next
section we describe our model in more detail, after which we
present our results.

C. The Model

We assume a system in which time is divided into discrete
time slots. We consider a queuing model for packet trans-
missions. Let D be the set of possible destinations. Each
destination in D can be a subset of the set of nodes. At each
time step t a set of feasible edge rate vectors R(t) ⊂ Rk is
given by the adversary where k = |E|, and E is the set of
all directed edges. Suppose that r(t) ∈ R(t). It means that if
we write r(t) = (r1(t), r2(t), . . . , rk(t)), then it is possible to
transmit on edge e at rate re(t), for all edges simultaneously.
In other words we can transmit data of size x1 on edge 1,
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data of size x2 on edge 2, etc., so long as 0 ≤ xe ≤ re(t) for
all e. Note that this means that the rates satisfy the downward
closed property, i.e., we can always transmit on an edge at a
rate that is less than the rate re(t).

This is a very general setting for the interference model
because it includes all the possible interference constraints,
including k-hop interference, independent set constraint, and
node exclusive constraints. For example for a dynamic network
G(V,E(t)), R(t) = {(re(t))e∈E(t)|re(t) = 0 or 1 for all e ∈
E(t), re1(t)re2(t) = 0 if e1 and e2 are incident in E(t)}
represents a set of feasible edge rate vectors of independent
set constraints on E(t) that changes over time.

We make the following assumption about the adversary. (It
was shown in [11] that if we do not have these conditions then
no on-line protocol can be stable.)

• All packet arrival and edge rates are bounded from above
and non-zero rates are bounded away from zero. In other
words, there exist values Rmin > 0 and Rmax > 0 such
that for each r(t) = (r1(t), . . . , rk(t)) ∈ R(t), re(t) ≤
Rmax and if re(t) 6= 0 then re(t) ≥ Rmin.

We now define the (ω, ε)-adversary. At each time, it de-
termines the packet arrivals and edge capacities. Then, the
routing and scheduling algorithm decides the packet transfers
in the network against the (ω, ε)-adversary. In this manner, our
framework can be understood as a type of sequential game.

Definition 1: We say that an adversary injecting the packets
and controlling the edges is an (ω, ε)-adversary, A(ω, ε), for
some ε > 0 and some integer ω ≥ 1, called a window
parameter, if the following holds: The adversary defines the
feasible rate vectors and packet arrivals in each time step
subject to the constraint that there exists a routing and
scheduling algorithm T (possibly involving fractional move-
ment of packets) which keeps the system stable. Let tp be
the time when a packet p is injected. Then we can define
Ψp = {(e, t′)|t′ ∈ [tp, tp + ω − 1], `(p, e, t′) > 0, where
`(p, e, t′) is a fractional amount of p that is transmitted by
T along e at time t′}, which corresponds to the movement of
packet p from its source to one of its destinations under the
algorithm T . For all packet p, (1 − ε

2 ) fraction 1 of p will
arrive to its destination during the window [tp, tp+ω−1]. For
any integer j, let Ij be the set of packets injected during the
window Wj = [jω, (j+1)ω−1]. Then the adversary assumes
that the following holds∑

p∈I j ∪I j −1,
t′∈{t′∈W |(e,t′)∈Ψp i }

`(p, e, t′) ≤
∑
t′∈Wj

(1− ε)re(t′),

where r(t′) ∈ R(t′) are edge rate vectors assigned by T .
This is a very general adversarial model because it cov-

ers all the possible interference conditions, including k-hop
interference, independent set constraint, and node exclusive
constraints, in dynamic networks, and this model includes

1In fact, for any (1 � �) fraction of p with constant 0 < � < " all the
results in this paper holds.

adversarial models used in [1], [12] and [13]. We prove the fol-
lowing theorem, which shows that the MAX-WEIGHT protocol
is throughput-optimal even against the strongest adversary.

Theorem 1: The MAX-WEIGHT protocol is stable under
any A(ω, ε) for any ε > 0.

D. The Protocol

We now define the MAX-WEIGHT protocol. We assume
that each node v has |D| queues which correspond to each
destination, respectively. Thus, we have n|D| many queues.
Let Qv,d be the queue at node v for data having destination
d. Let qtv,d be the total size of data in queue Qv,d at time t.
We define a general routing and scheduling algorithm MAX-
WEIGHT(β) that is parameterized by a parameter β > 0. We
use MAX-WEIGHT to denote the algorithm with β = 1. In
this paper, we will use the term scheduling algorithm to mean
a combined routing and scheduling algorithm.

Algorithm MAX-WEIGHT(β)

1) Choose r(t) ∈ R(t) and d(e) ∈ D for each e = (v, u) ∈
E, such that

∑
e∈E se(t)

(
(qt
v,d(e))

β − (qt
u,d(e))

β
)

is
maximized (with an arbitrary tie-breaking rule) where

se(t) := min

{
re(t),

∣∣∣∣∣q
t
v,d(e) − qtu,d(e)

2

∣∣∣∣∣
}
.

Send data of size se(t) from Qv,d(e) to Qu,d(e) along e.
2) For each time t, and for each node v, accept all packets

injected by the Adversary to v.
3) Remove all packets that arrive at their destination.

When β > 0, (qt
v,d(e))

β − (qt
u,d(e))

β ≥ 0 implies qt
v,d(e) −

qt
u,d(e) ≥ 0, so it guarantees all packet movement between

queues occur from a taller queue to a smaller queue.
The algorithm can be understood to be designed so that the

following potential function decreases as much as possible.
(However, as discussed earlier and unlike in the stochastic
case, there is no simple argument that for sufficiently large
queue sizes there always is a decrease in potential.)

P (t)
4
=
∑
v,d

(qtv,d)
β+1.

II. STOCHASTIC ANALYSIS

In this section we give more details of the typical stochastic
analysis and explain why this type of analysis does not directly
hold in the adversarial setting. We say that we are in the
stationary stochastic model if there is an underlying stationary
Markov Chain M with state space {mr} and a function f(·)
from {mr} to sets of feasible edge rate vectors R(t) such that
the Markov Chain updates its state at each time step and if it
has state {mr} at time t then R(t) = f(mr).

Throughout this section we will focus on the case that
β = 1 and study the potential function P (t) =

∑
v,d(q

t
v,d)

2.
Let atv,d (resp. btv,d) be the amount of data arriving into
(resp. departing from) Qv,d at time t, according to the MAX-
WEIGHT algorithm. For simplicity we shall also discuss the
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most basic scenario in which the distribution over feasible
service rate vectors is i.i.d. at each time step. Let a′tv,d and b′tv,d
be the corresponding quantities for the underlying “optimum”
schedule (that keeps the system stable by assumption). The
expected change in P (·) from time step t to time t + 1 is
given by,

E[P (t+ 1)− P (t)] = E[
∑
v,d

(qt+1
v,d )2 −

∑
v,d

(qtv,d)
2]

= E[
∑
v,d

(
qtv,d + atv,d − btv,d)

)2 −∑
v,d

(qtv,d)
2]

= E[
∑
v,d

((qtv,d)
2 + 2qtv,d(a

t
v,d − btv,d) + (atv,d − btv,d)2)

−
∑
v,d

(qtv,d)
2]

≤ E[
∑
v,d

(2qtv,d(a
′t
v,d − b′

t
v,d) + (atv,d − btv,d)2)]. (1)

The final inequality is due to the definition of MAX-WEIGHT
since we can think of MAX-WEIGHT as always making the
decision that minimizes

∑
v,d q

t
v,d(a

′t
v,d − b′

t
v,d). By taking

into account the i.i.d. nature of the service rate vectors and the
fact that the traffic injections can be scheduled by the optimal
algorithm, we have that E[(a′

t
v,d − b′

t
v,d)] ≤ −ε for all v, d.

since there is an upper bound on the amount of data that can
be transfered between two queues at each time step, E[(atv,d−
btv,d)

2] is bounded by some quantity C that is independent of
time. Hence,

E[P (t+ 1)− P (t)] ≤ C − 2
∑
v,d

qtv,dε

and thus if there is some Qv,d that satisfies qtv,d ≥ C/2ε then
the expected drift of P (t) is negative at time t. This in turn
implies that P (t) cannot grow indefinitely over time and so
the system is stable.

We can now demonstrate why this type of argument does not
hold in the adversarial model. In a non-stationary, adversarial
environment it is not necessarily the case that the set R(t)
and packet arrival rates are independent of the qtv,d values.
That is, we cannot assume that a large queue will have good
connectivity to the rest of work, so there is no analogue of the
statement that E[(a′

t
v,d − b′

t
v,d)] ≤ −ε. In particular, it may

be the case that for all large qtv,d and for all r(t) ∈ R(t), the
value of re(t) is zero for all edges e that are adjacent to node
v. Indeed, the fact that we have built up a large queue in one
region of the network may be precisely because that region
has poor connectivity to other parts of the network. Hence
we need a different type of argument to show stability in the
adversarial setting and this is the question that we address in
this paper.

III. MAIN RESULTS

At the highest level, our proof proceeds as follows. We first
show a result that bears some similarity to the “negative drift”
result that is used to prove stability in stationary stochastic
systems. In particular in Theorem 2 we show that whenever

a packet is injected, we can assign a set of transmissions by
the MAX-WEIGHT(β) protocol to the packet such that the
resulting decrease in potential almost matches the increase
in potential that arises from the packet injection itself. This
allows us to bound the increase in potential whenever a
packet is injected. (We note as an aside that when there are
no packet injections the MAX-WEIGHT(β) protocol ensures
that the potential never increases.) Moreover, Theorem 2 also
shows that whenever there is an injection to a queue that is
sufficiently tall, the assigned transmissions induce a decrease
in potential more than the increase due to the packet injection.
Hence for such injections there will always be a decrease in
potential.

However, in an adversarial system this type of argument
is not sufficient to show stability since it might be the case
that most packets are injected into small queues. We therefore
extend the proof of Theorem 2 to a more general result that
will ensure stability. In particular we introduce the notion
of a bad injection. This is an injection that is extra to the
injections that are allowed by our definition of adversary.
This notion is convenient since we will use an inductive
proof in which injections to small queues that lead to a big
increase in potential are treated as “extra” packets by the
inductive hypothesis. In particular, we are able to use an
inductive argument to show that the number of bad injections
is bounded, and hence we can obtain an upper bound of the
potential over all time. This immediately implies the stability
of MAX-WEIGHT(β).

We now describe these ideas in a little more detail. The
procedure in our setup is as follows. At each time, an adversary
chooses the packet injections and interference conditions. Then
MAX-WEIGHT(β) determines the (routing and) scheduling
of packet transmissions. To show the stability of MAX-
WEIGHT(β), we will define an assignment of each packet
with a set of (partial) transmissions in the network, so that
any injected packet to a tall queue will decrease the potential
function.

Definition 2: We imagine that there are |D| links on each
directed edge corresponding to each possible destination re-
spectively. Let L = {` = (e, d)|e = (v, u) ∈ E, d ∈ D}
be the set of all links. Let p be a packet injected at time t,
and let W = [t, t + ω − 1]. A set of partial transmissions
Γp assigned to p is defined as a vector of dimension ω|L|.
Let se(t′) be the vector chosen by MAX-WEIGHT(β) that
maximizes

∑
e se(t

′)
(

(qt
′

v,d(e))
β − (qt

′

u,d(e))
β
)
. For a given

adversary A(ω, ε), and a scheduling algorithm Alg, let
Γp(A(ω, ε), Alg) = (sp,`(t

′))`∈L,t′∈W be a vector of size
ω|L| that satisfies for each e ∈ E, d ∈ D, t′ ∈ W , (i)
sp,(e,d)(t

′) ≥ 0, and (ii)
∑
p,d sp,(e,d)(t

′) ≤ se(t
′). We say

Γp(A(ω, ε), Alg) is a set of (possibly partial) transmissions
assigned with p. For convenience, we denote it by Γp.

We note that the word partial is used to reflect the fact that
one transmission may correspond to multiple packets p subject
to the condition (ii). Conceptually, it allows the case that an
injected packet can be transmitted to its destination across
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𝑙1 = ( 𝑣1 , 𝑣2 , 𝑣4) 

𝑙2 = ( 𝑣3 , 𝑣4 , 𝑣4) 

  𝑝1 

Source 

 Destination 

Packet 

Fig. 1. An example of partial transmission assignment. Suppose that a packet
p1 is injected to a node v1 at time tp1 , and its destination is v4. For instance,
a set of partial transmissions assigned with p1 that contains sp1,`1 (tp1 +2) =
0:5 and sp1,`2 (tp1 � 1) = 1 can be Γp. Note that the assignments do not
need to be at the same time, and the whole assignments do not need to form
a path, or multiple paths.

multiple paths. Thus, an assignment of partial transmissions
Γp of each packet can represent many general routing patterns.
Moreover, it allows the case when Γp does not form a set of
paths. An example of this assignment is described in Fig 1.

Theorem 2: Consider a given adversary A(ω, ε) for any
ω ≥ 1 and ε > 0, and the MAX-WEIGHT(β) protocol for
some β > 0. For any injected packet p, we can assign this
packet with Γp = Γp(A(ω, ε), MAX-WEIGHT(β)) so that
the sum of total potential changes is less than − ε

1−ε/2`p(β +

1)qβ + `pO(qβ−1), where q is the height of the queue where
the packet is injected and `p is a size of an injected packet p.
Therefore, there is a constant q∗ depending on ω and ε, so that
if q ≥ q∗ the sum of potential changes due to the injection is
less than − ε2`pq

β .
We sketch the overall proof of Theorem 2 in Section IV-A,

while the details are made available in a technical report [23].
Now, we will prove the stability of the MAX-WEIGHT

protocol under any A(ω, ε). The same argument can be applied
to prove that the MAX-WEIGHT(β) protocol with any constant
β > 0 is stable under any A(ω, ε) with ε > 0.

We define a more general adversarial model, which we call
a general adversarial queue system with bad packets. In this
model the number of queues can be any finite number, not
only of the form n|D|. An adversary allowing b many bad
packets is defined as follows.

By Theorem 2, for any A(ω, ε) under MAX-WEIGHT, for
each injection of packet p, we can assign this packet with a
set of partial transmissions Γp so that the sum of potential
changes due to these movements are at most − ε

1−ε/2`pq+C,
where q is the height of the queue where the packet is injected
and C is a constant depending on ω and ε (but not on n and
t). In a general adversarial queuing system, we also consider
the same assignment Γp. If the sum of potential changes due
to Γp is at least − ε

1−ε/2`pq + C + 1, we now say this a bad
packet. We say all the other injected packets are good packets.

Definition 3: We say that an adversary injecting the packets
and controlling edge capacities in a general adversarial queue
system is an A(ω, ε, b) adversary for some ε > 0 and some

integers ω ≥ 1 and b ≥ 0, if the following holds: there
exists a scheduling algorithm Alg and an assignment of partial
transmissions for each injected packet p (for example, the
collection of Γp for MAX-WEIGHT protocol), such that among
all the packets injected over all time, there are at most b bad
packets.

In the proof of MAX-WEIGHT stability, we will use an
induction on the number of queues. For a given subset of
queues, we can imagine a smaller (sub-)system of those
queues. For an injected packet p, if too much of the assigned
partial transmissions do not occur between the queues of the
sub-system, we will consider p as a bad packet. In the analysis,
we will use the following property of good packets.

Lemma 3: Consider a general adversarial queue system
A(ω, ε, b) with a corresponding scheduling algorithm Alg and
a corresponding set of partial transmissions of packets Γ. Then
there is a constant q∗ depending on ω and ε, so that for any
good packet p injected to a queue of height q, if q ≥ q∗ the
sum of the decrease of potential due p is more than ε

2`pq.
The crux of our analysis will involve proving the following

results (in section IV-B and a technical report).
Theorem 4: Consider any general adversarial queue system

A(ω, ε, b) for any constant ε > 0 with corresponding schedul-
ing algorithm Alg. If Alg guarantees all packet movement
between queues occurs from a taller queue to a smaller queue,
then Alg is stable.

Hence from Theorem 4 we obtain that Theorem 1 directly.

IV. PROOF OUTLINES

A. Proof of Theorem 2

The collection of Wj = [jω, (j + 1)ω − 1] for all integer
j ≥ 0 is non-overlapped and the union of this collection covers
all time slots t. From now on let W = Wj for some j.

For each time t′ ∈ Wj ∪ Wj−1, and for each node v,
we accept all packets injected by the adversary. For each
packet p ∈ Ij ∪ Ij−1 we will associate some fraction rp =
{dp,e(t′)|(e, t′) ∈ Ψp} of rates of directed edges used in Ψp as
follows. Let p1, . . . pm be all the packets injected in Ij ∪ Ij−1.
The order of pi’s can be any ordering. Then from the definition
1, for any e used in Ψpi ,∑

i=1,...,m
t′∈{t′∈W |(e,t′)∈Ψp i }

`(pi, e, t
′) ≤ (1− ε)

∑
t′∈W

r(0)
e (t′). (2)

where r(0)(t) ∈ R(t) is the edge rate vector assigned by T .
We will define dpi ,e(t

′) and r
(i)
e (t′) recursively for i =

1, . . . ,m, so that 0 ≤ dpi ,e(t
′) ≤ r(i−1)

e (t′),

(1− ε)
∑
t′∈W

dpi ,e(t
′) =

∑
t′∈W

`(pi, e, t
′), (3)

and r(i)
e (t′) = r

(i−1)
e (t′)− dpi ,e(t

′).
Let (se(t

′)) be the vector chosen by MAX-WEIGHT(β).
For any time t′, the sum of potential changes at t′ by MAX-
WEIGHT(β) is less than or equal to the sum of potential
changes at t′ by T . For any p, we will define Γp =
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so the value of qi does not change. When we reach time step
t′ it must be the case that qi(t′) < 2qi−1(t′). Moreover, by the
definition of the edge rates ri−1(t′) = 1−ε and ri(t′) = 1−ε

2 .
Hence the MAX-WEIGHT protocol serves queue i− 1 but the
arrivals are for queue i. Hence qi(t′) is strictly greater than
qi(t). By repeating this process we eventually reach a time t′′

at which qi(t′′) ≥ (1− ε)2i.
By the inductive hypothesis there must be a time t′′′ ≥ t′′

for which qj(t′′′) ≥ (1−ε)2j for all j ≤ i−1. Between times
t′′ and t′′′ the value of qi cannot decrease. Hence at time t′′′

we have qj(t′′′) ≥ (1− ε)2j for all j ≤ i. The inductive step
is complete.

Corollary 7: There exists a network configuration with N
edges and an A(1, ε) adversary such that some queue grows
to size (1− ε)2N−1.

We remark in conclusion that with a different protocol
adversarial models do not necessarily lead to exponentially
large queues. In [21] another protocol was presented (which
directly keeps track of the past history of edge rates and
arrivals) which ensures a maximum queue size of O(ωk|R|2
Rmax), where R is the set of feasible rate values. However,
we still feel that it is of interest to study the performance
and stability of the MAX-WEIGHT protocol in adversarial
networks since it is extremely simple to implement and it has
been proposed so many times in the literature as a solution to
the scheduling problem in wireless networks.

VI. STABILITY OF APPROXIMATE MAX - WEIGHT

As remarked in the introduction, computing the exact Max-
Weight set of feasible transmissions is in general an NP-hard
problem. Hence a natural question to ask is what can be
achieved if at each time step we only find an approximate
Max-Weight set of feasible transmissions. In this section we
address this question.

Recall that A(ω, ε) assures that there is a set of fractional
movement of packets Ψp for each p ∈ IW and there is a edge
rate vector re ∈ R(t) for each t ∈ W , so that each edge is
used at most (1 − ε) times of the sum of rates associated at
e during the time window W . Thus, it guarantees that each
edge e can transmit more data than is actually required by
a 1

1−ε factor. Hence, the actual packet movement by MAX-
WEIGHT induces potential changes that are 1

1−ε times greater
than necessary.

For an optimization problem, an ε-approximation algorithm
is an algorithm that provides an approximate solution within
(1 ± ε) factor of the optimal solution. Although computing
the optimal solution of MAX-WEIGHT is computationally
very hard, in many practical wireless networks ε-approximate
solution for r(t) can be computed in polynomial time. For
example, [22] presented an ε-approximate solution to find the
MWIS (maximum weight independent set) on planar graphs,
and this was extended by several authors to more general
classes of graphs. In [15], [16], an ε-approximate MWIS for
a large class of wireless networks in the Euclidean space is
provided. In our model, we assume an ε-approximate MAX-
WEIGHT computes an ε-approximate solution r′(t) for each

time t so that the potential decrease is at least (1−ε) times the
maximum possible potential decrease at time t. We will prove
the stability of any ε̂-approximate MAX-WEIGHT protocol
under A(ω, ε) for ε > 0, if 0 < ε̂ < ε.

Theorem 8: For 0 < ε̂ < ε, any ε̂-approximate MAX-
WEIGHT is stable under A(ω, ε).

Proof: Let ε̃ = ε−ε̂
1−ε̂ , then A(ω, ε) is A(ω, ε̃). As in the

statement of Theorem 2, if we can associate the injection of
p ∈ Ij ∪ Ij−1 with a set of partial transmissions Γ′p, so that
the sum of potential changes due to this injection to a queue of
height q ≥ q∗ is less than −ε̃2 `pq

β , then all the other arguments
in the proof of Theorem 4 holds when we replace ε with ε̃.

As in the proof of Theorem 2, we define d′p,e(t
′) =

1−ε
1−ε̃dp,e(t

′) for all e ∈ E, t′ ∈ W , and p ∈ Ij ∪ Ij−1. Then
we show that d′p,e(t) satisfy (3) if we substitute ε by ε̃. As in
the proof of Theorem 2 in [23], we define

K ′ej
(t′) =

m∑
i=1

d′pi ,(vj ,uj )(t
′)
(

(qt
′

vj ,di
)β − (qt

′

uj ,di
)β
)

= (1− ε̂)Kej (t′). (5)

By the definition of ε̂-approximate MAX-WEIGHT, we can
take ŝej (t′) for each ej = (vj , uj) ∈ E, t′ ∈W such that

J ′(t′) :=

k∑
j=1

ŝej (t){(qt
vj ,d

(e j )
a

)β − (qt
uj ,d

(e j )
a

)β}.

≥
k∑
j=1

(1− ε̂)sej (t){(qt
vj ,d

(e j ))
β − (qt

uj ,d
(e j ))

β}

for some destinations d(ej )
a for each ej . By (5) and (6), we

can inductively assign

ŝpi ,(ej ,di )(t
′) = min

{ J ′((j−1)m+(i−1))
(t′)

(qt
′
vj ,di

)β − (qt
′
uj ,di

)β
,

ŝ(i−1)
ej

(t′),
K ′

(i−1)
ej

(t′)

(qt
′
vj ,di

)β − (qt
′
uj ,di

)β

}
,

where ej = (vj , uj) and di is the destination of pi, in the
same manner as in the proof of Theorem 2 in [23]. Then, for
all ej ∈ E, t′ ∈W , and pi ∈ Ij ∪ Ij−1,∑

e∈E

∑
p,d

ŝp,(e,d)(t
′)
(

(qt
′

v,d)
β − (qt

′

u,d)
β
)

≤
∑
e∈E

ŝe(t
′)
(

(qt
′

v,d(e))
β − (qt

′

u,d(e))
β
)
.

Let Γ′pi
= (ŝpi ,ej (t′))ej ∈E,t′∈W for each pi ∈ Ij ∪ Ij−1, we

obtain that the sum of potential changes due to this injection
is less than −ε̃`pi q

β by using the same argument in section
IV-A. This in turn implies that ε̂-MAX-WEIGHT algorithm is
stable under A(ω, ε).

VII. EXPERIMENTS

A. Simulation Setup

We now describe a numerical experiment that aims to
understand the queue size dynamics of the MAX-WEIGHT
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Fig. 3. The above 3 underlying graphs express which edges are not available
under r(1); r(2); r(3).

protocol under the adversarial model. Consider a n1 × n2

simple grid graph G, and let n = n1n2. Then, there are
4n− 2n1 − 2n2 directed edges in the graph. We assume that
all single nodes can be a destination. We let n1 = 3, n2 = 4,
so n = 12, and 4n− 2n1 − 2n2 = 34.

In our simulation, we used 3 different edge rate vectors
r(1), r(2), r(3) ∈ R34 for G. For each r(i), 1 ≤ i ≤ 3, we
select 3 edges among 17 possible edges, and remove them.
The underlying graphs of r(1), r(2), r(3) are described in Fig
3. Other directed edges have edge rates chosen independently
and uniformly at random from [0.5,2]. We used the node-
exclusive constraint model, i.e., matching constraint model.

Among n(n− 1) many distinct source-destination pairs (S-
D pairs), we randomly chose K many S-D pairs (s1, d1), . . . ,
(sK , dK) for K = 10. When the set of feasible edge rate
vectors R is fixed for all time t ≥ 0, we define the feasible
arrival rate as follows. The collection of all the feasible arrival
rate vectors are called the network stability region.

Definition 4: The arrival rate vector γ = (γ1, . . . , γK) ∈
[0, 1]K corresponding to the S-D pairs (s1, d1), . . . , (sK , dK)
is said to be feasible, if there exist flows, (f1, . . . , fK) such
that

1) For each 1 ≤ j ≤ K, f j routes a flow of at least rj
from sj to dj .

2) The induced net flow on the directed edges, f̂ =∑K
i=1 f

j belongs to the interior of co(R) where co(R)
is the convex hull of R.

If an arrival rate vector is in the interior of co(R), and the
arrivals are identical for all time, then MAX-WEIGHT is stable
[15]. Moreover, if an arrival rate vector is in the interior of
co(R)

c, then MAX-WEIGHT is unstable. We chose K many
source-destination pairs at random. For each r(i), 1 ≤ i ≤
3, we compute 3 different feasible arrival rate vectors that
are closed to the boundary of the network stability region.
To do so, we fixed random arrival rate vectors γ(1), γ(2), γ(3)

such that each entry has a value from [0.5, 2]. We computed
constants cij , by binary search, for edge rate vector r(i), and
arrival rate vector γ(j) so that cijγ(j) is stable under MAX-
WEIGHT, and (cij + 0.001)γ(j) is not stable under MAX-
WEIGHT, as described in Fig 4. Each cij varied from 0.098
to 0.178 in our simulation. We used a sufficiently large time
window of size 106 so that we could check the stability.

We did two set of experiments. In both of those experiments,
we divided the time t ≥ 0 into non-overlapped sub-windows
of ordered phases. The first phase is t ∈ [1, d1.5e], the second
phase is t ∈ [d1.5e + 1, d1.5 + (1.5)2e], and for each i ≥ 1,
the ith phase is: t ∈ [d

∑i
j=1(1.5)j−1e+ 1, d

∑i
j=1(1.5)je].

In the first experiment, we fixed the edge rate vector r(i)

qmax qmax qmax 

qmax 

qmax qmax 

qmax qmax 

qmax 

0                  1000000 0                  1000000 0                  1000000 

0                  1000000 0                  1000000 0                  1000000 

0                  1000000 0                  1000000 0                  1000000 

�N�:�5�;���¬���Û�:�5�; �N�:�5�;���¬���Û�:�6�; �N�:�5�;���¬���Û�:�7�; 

�N�:�6�;���¬���Û�:�5�; �N�:�6�;���¬���Û�:�6�; �N�:�6�;���¬���Û�:�7�; 

�N�:�7�;���¬���Û�:�5�; �N�:�7�;���¬���Û�:�6�; �N�:�7�;���¬���Û�:�7�; 

Fig. 4. For each pair of edge rate and arrival rate vector, the plot represents
the change of the maximum size of queues for cij
(j) and (cij + 0:01)
(j)
in the time window [0,106].

  0                                                   1000000 

qmax 

80 

0 

Fixed edge-rate 𝒓(𝟏) & cyclic 3 feasible arrivals 

cyclic 

t 

𝑐11𝛾
(1) 𝑐12𝛾

(2) 𝑐13𝛾
(3) 

Fig. 5. For the edge rate vector r(1), we plot the maximum queue size
when we use fixed arrival rate vectors c11
(1), c12
(2), c13
(3), and a
cyclic arrival rate vector.

for some i ∈ {1, 2, 3}. Over time the adversary injects packets
as follows. For t ≥ 0, if t is in the j-th phase, then inject
packets with an arrival rate cij̄γ(j̄) where j̄ ∈ {1, 2, 3} and
j̄ ≡ j (mod 3).

In the second experiment, over time the adversary deter-
mines edge rate vectors and packet arrivals as follows. For
t ≥ 0, if t is in the i-th phase, we assign an edge rate vector
r(̄i) where ī ∈ {1, 2, 3} and ī ≡ i (mod 3), and we assign an
arrival rate vector cījγ(j) at random.

Notice that, in both experiments, the average of the arrival
rate vectors until time T does not converge as T goes to infinity.
Also in the second experiment, the same holds for the edge rate
vectors. However the above injections satisfy the definition of
A(ω, ε) for some ω > 0 and a small ε > 0. In both setups,
we observed the dynamics of the maximum queue sizes over
time.
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Cyclic 3 edge-rates & feasible arrivals 

qmax 

120 

0 

t 
  0                                                   1000000 

Fig. 6. We use the randomly cyclic edge and arrival rate pairs. It shows the
stability of MAX-WEIGHT.

B. Simulation Results

For the first experiment, as Fig 5 shows, for each edge
rate vector, MAX-WEIGHT is stable with the above cyclic rate
vectors. Interestingly, the maximum queue size may increase
in some sub-window, but it decreases rapidly when the new
sub-window starts. This is because the congested edges are
different for each arrival rate vector, and the traffic-congestions
are resolved when the arrival rate is changed. Notice that
the maximum queue sizes for the cyclic rate vector case are
bounded above and bounded below by some fixed arrival rate
vector cases respectively.

The queue dynamics for the second experiment are de-
scribed in Fig 6. The gray lines describe queue sizes for fixed
edge and arrival rate vectors. The black line describes the
queue size for the cyclic rate vector case. Again, the maximum
queue sizes for the cyclic rate vector case are bounded above
and bounded below by some fixed edge and arrival rate vector
cases respectively. From our two experiments we observe that
MAX-WEIGHT make the system stable under A(ω, ε) even
when the edge and arrival rate vectors do not converge over
time.

VIII. CONCLUSION

In this paper we have shown that the MAX-WEIGHT pro-
tocol remains stable even when the traffic arrivals and edge
rates are determined in an adversarial manner.

In our opinion the most natural open question concerns
the bound on queue size. Our analysis gives a bound that
is exponential in the network size and we have shown in
Section V that such a bound is unavoidable in the general case.
However, achieving these large queue sizes involves choosing
the achievable rate vectors R(t) in a very specific manner.
We are interested in whether there are any simple sufficient
conditions on the sets R(t) which would ensure that such large
queues do not occur.
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